Stability Switches in a First-Order Complex Neutral Delay Equation

نویسندگان

  • Manuel Roales
  • Francisco Rodríguez-Mateos
چکیده

by transforming the complex equation into two coupled real DDEs. In [5], Wei and Zhang considered the same equation and, by studying the distribution of the roots of the characteristic equation for the associated real differential system with delay, analyzed the existence of stability switches [6–8]. Transforming a complex DDE into two coupled real DDEs to analyze its stability has some drawbacks, as, in general, the orders of the characteristic quasipolynomials to be analyzed double, and, since the study of the distribution of their roots is much more complicated as their degrees increase, it becomes very difficult to obtain necessary and sufficient conditions of stability [1, 9, 10]. To avoid this problem, recently Li et al. [11] presented a method for directly analyzing the stability of complex DDEs on the basis of stability switches.Their results generalize those for real DDEs, thus greatly reducing the complexity of the analysis. In this paper, the results developed in [11] will be used to study the stability switches of the zero solution of the neutral equation (1).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Uncountably many bounded positive solutions for a second order nonlinear neutral delay partial difference equation

In this paper we consider the second order nonlinear neutral delay partial difference equation $Delta_nDelta_mbig(x_{m,n}+a_{m,n}x_{m-k,n-l}big)+ fbig(m,n,x_{m-tau,n-sigma}big)=b_{m,n}, mgeq m_{0},, ngeq n_{0}.$Under suitable conditions, by making use of the Banach fixed point theorem, we show the existence of uncountably many bounded positive solutions for the above partial difference equation...

متن کامل

Nonlinear oscillation of certain third-order neutral differential equation with distributed delay

The authors obtain necessary and sufficient conditions for the existence of oscillatory solutions with a specified asymptotic behavior of solutions to a nonlinear neutral differential equation with distributed delay of third order. We give new theorems which ensure that every solution to be either oscillatory or converges to zero asymptotically. Examples dwelling upon the importance of applicab...

متن کامل

New Robust Stability Criteria for Uncertain Neutral Time-Delay Systems With Discrete and Distributed Delays

In this study, delay-dependent robust stability problem is investigated for uncertain neutral systems with discrete and distributed delays. By constructing an augmented Lyapunov-Krasovskii functional involving triple integral terms and taking into account the relationships between the different delays, new less conservative stability and robust stability criteria are established first using the...

متن کامل

Asymptotic Properties, Nonoscillation, and Stability for Scalar First Order Linear Autonomous Neutral Delay Differential Equations

We study scalar first order linear autonomous neutral delay differential equations with distributed type delays. This article presents some new results on the asymptotic behavior, the nonoscillation and the stability. These results are obtained via a real root (with an appropriate property) of the characteristic equation. Applications to the special cases such as (non-neutral) delay differentia...

متن کامل

Bifurcation Analysis in a Kind of Fourth-Order Delay Differential Equation

A kind of fourth-order delay differential equation is considered. Firstly, the linear stability is investigated by analyzing the associated characteristic equation. It is found that there are stability switches for time delay and Hopf bifurcations when time delay cross through some critical values. Then the direction and stability of the Hopf bifurcation are determined, using the normal form me...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Applied Mathematics

دوره 2013  شماره 

صفحات  -

تاریخ انتشار 2013